skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mooney, T C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Toric t -designs, or equivalently t -designs on the diagonal subgroup of the unitary group, are sets of points on the torus over which sums reproduce integrals of degree t monomials over the full torus. Motivated by the projective structure of quantum mechanics, we develop the notion of t -designs on the projective torus, which have a much more restricted structure than their counterparts on full tori. We provide various new constructions of toric and projective toric designs and prove bounds on their size. We draw connections between projective toric designs and a diverse set of mathematical objects, including difference and Sidon sets from the field of additive combinatorics, symmetric, informationally complete positive operator valued measures and complete sets of mutually unbiased bases (MUBs) from quantum information theory, and crystal ball sequences of certain root lattices. Using these connections, we prove bounds on the maximal size of dense B t mod m sets. We also use projective toric designs to construct families of quantum state designs. In particular, we construct families of (uniformly-weighted) quantum state 2 -designs in dimension d of size exactly d ( d + 1 ) that do not form complete sets of MUBs, thereby disproving a conjecture concerning the relationship between designs and MUBs (Zhu 2015). We then propose a modification of Zhu's conjecture and discuss potential paths towards proving this conjecture. We prove a fundamental distinction between complete sets of MUBs in prime-power dimensions versus in dimension 6 (and, we conjecture, in all non-prime-power dimensions), the distinction relating to group structure of the corresponding projective toric design. Finally, we discuss many open questions about the properties of these projective toric designs and how they relate to other questions in number theory, geometry, and quantum information. 
    more » « less
    Free, publicly-accessible full text available December 3, 2025
  2. Monte Carlo simulations are useful tools for modeling quantum systems, but in some cases they suffer from a sign problem, leading to an exponential slow down in their convergence to a value. While solving the sign problem is generically NP hard, many techniques exist for mitigating the sign problem in specific cases; in particular, the technique of deforming the Monte Carlo simulation's plane of integration onto Lefschetz thimbles (complex hypersurfaces of stationary phase) has seen significant success in the context of quantum field theories. We extend this methodology to spin systems by utilizing spin coherent state path integrals to reexpress the spin system's partition function in terms of continuous variables. Using some toy systems, we demonstrate its effectiveness at lessening the sign problem in this setting, despite the fact that the initial mapping to spin coherent states introduces its own sign problem. The standard formulation of the spin coherent path integral is known to make use of uncontrolled approximations; despite this, for large spins they are typically considered to yield accurate results, so it is somewhat surprising that our results show significant systematic errors. Therefore, possibly of independent interest, our use of Lefschetz thimbles to overcome the intrinsic sign problem in spin coherent state path integral Monte Carlo enables a novel numerical demonstration of a breakdown in the spin coherent path integral. 
    more » « less